Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

HFTs and Dealer Banks: Liquidity and Price Discovery in FX Spot Trading

Wenqian Huang¹ Peter O'Neill² Angelo Ranaldo³ Shihao Yu⁴

¹BIS ²UNSW ³U of St. Gallen and SFI ⁴Columbia U

September 19, 2023 The Microstructure Exchange

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion

Outline

Introduction

Literature

Data

Liquidity provision

Price discovery

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion

Outline

Introduction

Literature

Data

Liquidity provision

Price discovery

Literature 0000 **Data** 000000 Liquidity provision

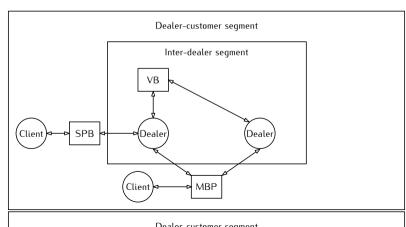
Price discovery

Conclusion

Background

- ► Financial markets have undergone significant structural changes in the last two decades
 - Trading more electronic, automated, and fast-paced
 - ► The arrival of "new" market participants: high-frequency traders (HFTs)
- ▶ HFTs are particularly prominent in all-to-all markets (e.g., equities) (Menkveld, 2016)
- In OTC markets such as foreign exchange (FX), HFTs also made inroads (Bank for International Settlements, 2011)
- ▶ Rich HFT literature in equities but sporadic in FX (Chaboud et al., 2014)

Introduction	
00000	


Data 000000 Liquidity provision

Price discovery

Conclusion

Motivation

Why study HFTs in FX? A unique two-tiered market: a dealer-to-dealer (D2D) segment and a dealer-to-client (D2C) segment

Old regimeNew regime

Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

Dealers vs HFTs in OTC

D2D predominantly electronic and automated

 \rightarrow HFTs can have speed and technology advantages...

 $\ldots and thus react quicker to <math display="inline">\ensuremath{\textbf{public}}$ information

 D2C dominated by dealer banks, providing agency execution services, single-dealer platforms, and other client relationship services (Bank for International Settlements, 2018)

 \rightarrow Dealers could gain private information...

 \dots through explicit learning such as price discrimination (Collin-Dufresne, Hoffmann, and Vogel, 2019)

... or implicit learning via internalised client trades or trade execution for informed clients)

Introd	uction
0000	•

Data 000000 Liquidity provision

Price discovery

Conclusion

Paper in a nutshell

- ► Aim: Contrast HFTs and dealers in liquidity provision and price discovery
- ► Takeaway:
 - ► HFTs better at processing public information; dealers better at private information
 - ► They play **complementary** roles in liquidity provision and price discovery
- ► Evidence:
 - ► HFTs withdraw *less* liquidity (than dealers) during market-wide volatility spikes (public information ↑)...
 - ► ...but more ahead of scheduled macroeconomic news announcements (private information ↑)...
 - Dealers' trades more informative than their quotes; HFTs' quotes more informative than their trades
 - ► HFTs' quote messages contribute most to price discovery, incorporating public information

Literature ●○○○ **Data** 000000 Liquidity provision

Price discovery

Conclusion

Outline

Introduction

Literature

Data

Liquidity provision

Price discovery

Literature ○●○○ **Data** 000000 Liquidity provision

Price discovery

Conclusion

Literature

- ► Link exchange rate dynamics to
 - aggregated order flow (Evans and Lyons, 2002; Evans, 2002; Payne, 2003; Bjønnes and Rime, 2005; Breedon and Vitale, 2010; Evans, 2010)...
 - ...or disaggregated order flows (Evans and Lyons, 2006; Breedon and Vitale, 2010; Cerrato, Sarantis, and Saunders, 2011; Osler, Mende, and Menkhoff, 2011; Breedon and Ranaldo, 2013; Menkhoff et al., 2016).
 - Our paper: Leveraging the granularity of our dataset, we are able to...
 - ...contrast the price discovery roles of the traditional (banks) and new market makers (HFTs)...
 - ...and to further disaggregate the contribution of trade flows versus quote updates to exchange rates for the first time.

Literature ○O●O **Data** 000000 Liquidity provision

Price discovery

Conclusion

Literature (Cont.)

► FX liquidity

- Overall market liquidity (Mancini, Ranaldo, and Wrampelmeyer, 2013; Karnaukh, Ranaldo, and Söderlind, 2015; Ranaldo and Santucci de Magistris, 2019)
- ► Individual liquidity providers (Bjønnes and Rime, 2005; Bjønnes, Rime, and Solheim, 2005)
- Liquidity during extreme events: the Swiss franc "de-peg" (Breedon et al., 2018); the pound sterling flash crash (Bank for International Settlements, 2017; Noss et al., 2017)
- Our paper: contrast liquidity provision by HFTs with dealers for the first time...
- ...and provide more general evidence of their liquidity provision in response to adverse market conditions rather than rare and extreme events

Literature ○○○● **Data** 000000 Liquidity provision

Price discovery

Conclusion

Literature (Cont.)

High-frequency trading

- In equities, HFTs play an important role in both liquidity provision (eg Menkveld, 2013; Korajczyk and Murphy, 2019; Van Kervel and Menkveld, 2019) and price discovery (eg Brogaard, Hendershott, and Riordan, 2014)
- However, it is not clear whether these findings apply to the FX market, given its unique two-tiered market structure
- Our paper: reveal key differences in liquidity provision and price discovery by HFTs and dealer banks in OTC market (FX)

Literature

Data ●○○○○○ Liquidity provision

Price discovery

Conclusion

Outline

Introduction

Literature

Data

Liquidity provision

Price discovery

Literature 0000 Data ○●0000 Liquidity provision

Price discovery

Conclusion

Data

- FCA regulatory dataset from Refinitiv FX Spot Matching: one of the two prominent dealer-to-dealer (D2D) markets
- ► Limit order book (LOB) event messages
 - New limit order submissions, cancellations, executions
 - Timestamped to the millisecond
 - With participant identifiers
- ► We use LOB messages to build order books
- ► GBP/USD and AUD/USD, 2 major currency pairs predominantly traded on Matching
- $\blacktriangleright~\approx$ 2.5 years from 28 October 2012 to 5 June 2015.

Literature 0000 Liquidity provision

Price discovery

Conclusion

Trader classification

- Each message is associated with a four-character Terminal Controller Identifier (Dealing) Code (TCID), which reconciles to the legal entity name of the trading firm
- ► Based on the TCIDs, we classify market participants into <- Data-based cross-check
 - ► Dealers
 - ► HFTs
 - Commercial bank
 - ► Non-HFT principal trading firms (PTFs) & hedge funds (HF)

Data

Other participants

ntroduction	
00000	

Data ○○○●○○ Liquidity provision

Price discovery

Conclusion

Summary statistics of liquidity and trading

- Both pairs are very liquid
 - High trading volume
 - Tight bid-ask spread
 - Deep top-of-book depth

	# Days	Volume (mil)	# Trade	RQS (bp)	DepthTop (mil)
GBP/USD	638	7721	5329	0.99	6.20
AUD/USD	630	13189	7962	1.36	10.55

Literature 0000 **Data** ○000●0 Liquidity provision

Price discovery

Conclusion

Summary statistics of liquidity and trading

- ▶ Dealers and HFTs combined contribute to over 70% of the trading volume.
- ► HFTs more aggressive than dealers and commercial banks.

	Category	# Days	Total Trading Volume (mil)	Total Trading Volume Share (%)	Passive Trading Volume (mil)	Passive Trading Volume Share (%)	Passiveness (%)
	Dealer	638	7030	45.3	4323	56.3	62.2
	HFT	638	5173	33.5	1351	17.0	25.2
GBP/USD	Commercial Bank	638	1737	11.2	1195	15.6	69.7
,	Non-HFT PTFs & HF	638	521	3.4	358	4.7	69.8
	Other	638	980	6.5	495	6.4	51.3
	Dealer	630	10972	41.4	5906	44.9	54.3
	HFT	630	8685	33.1	3161	23.5	35.6
AUD/USD	Commercial Bank	630	4962	18.8	3039	23.2	62.0
	Non-HFT PTFs & HF	630	741	2.8	498	3.8	68.3
	Other	630	1016	4.0	585	4.5	58.0

Literature

Data ○0000● Liquidity provision

Price discovery

Conclusion

Pause #1

Questions?

Literature

Data 000000 Liquidity provision ●○○○○○○○○○○○○ Price discovery

Conclusion

Outline

Introduction

Literature

Data

Liquidity provision

Price discovery

Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

How to measure liquidity?

- Clear definition in theory: the degree to which a security can be traded at a price close to its consensus value.
- ► Two major challenges in practice:
- ► **How** to measure it?
 - Volume, Amihud measure (price change/volume)
 - Bid-ask spread, depth, implementation shortfall
 - Largely depends on data availability...
- ► When to measure it?
 - Market normal times vs stress times

Literature 0000 **Data**

Liquidity provision

Price discovery

Conclusion

Our approaches to liquidity provision

- 1. A traditional definition: being on the passive side
 - Metrics: bid-ask spread and top-of-book depth
 - Focus on adverse market conditions
 - Market-wide volatility spikes
 - Ahead of macroeconomic news announcements
- 2. A more general definition: "trade against the wind"
 - ► Can be on the aggressive or passive side (e.g., aggressive buy during a flash crash)
 - ► Metric: trade against temporary pricing errors identified by a state space model

Introduction	Literature	Data	Liquidity provision	Price discovery	Conclusion
00000	0000	000000	000€00000000	000000000	000

Order-book liquidity provision measures

► The relative (half) quoted spread (*RQS*) of *trader category i* at time *t*:

$$RQS_{it} = \frac{BO_{it} - BB_{it}}{2 \times Mid_t}$$
(1)

► The top-of-book depth (*DepthTop*) contribution by *trader category i*, *DepthTop_{it}*:

$$DepthTop_{it} = Q_{it}^{BO_t} + Q_{it}^{BB_t}$$
⁽²⁾

► Full sample: HFTs have tighter bid-ask spread and larger top-of-book depth

	Measure	RQS	(bp)	DepthTo	op (mil)	DepthT	opShr
		Mean	SD	Mean	SD	Mean	SD
	Dealer	1.34	0.29	2.30	0.56	0.33	0.06
GBP/USD	HFT	0.88	0.15	3.54	0.84	0.50	0.07
AUD/USD	Dealer	1.97	0.51	2.71	0.62	0.25	0.05
A0D/03D	HFT	1.18	0.23	6.25	1.67	0.55	0.08

Introduction	Literature	Data	Liquidity provision	Price discovery
00000	0000	000000	0000€0000000	000000000

Order-book liquidity provision and adverse market conditions

► Do HFTs and dealers have different strengths in market-making? Conjecture:

- ► HFT: fast, and better at processing **public** information
- ► Dealers: D2C network, and better at processing **private** information
- Examine liquidity provision during adverse market conditions of two distinct types:
 - ► Market-wide volatility (VIX) spikes: **public** information
 - ► Ahead of macroeconomic news announcements: **private** information

Introduction	Literature	Data	Liquidity provision	Price discovery
00000	0000	000000	00000€000000	000000000

Order-book liquidity provision and adverse market conditions

A vector-autoregressive model with exogenous variables (VARX)

$$y_t = \alpha + \Phi_1 y_{t-1} + \dots + \Phi_p y_{t-p} + \Psi z_t + \varepsilon_t$$
(3)

Endogenous variables:

$$y = (LqtPro_{Dealer} LqtPro_{HFT} Vlm TrdImb Vol)'$$

Exogenous variables:

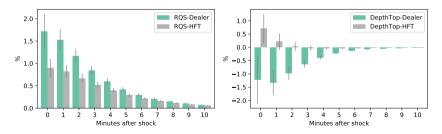
$$z = (\mathbb{1}_{dCompVIX_{+}^{*}} \quad News_{-5min} \quad \cdots \quad News_{5min})^{'}$$

• $\mathbb{1}_{dCompVIX_{+}^{*}}$ is a dummy variable which equals one when $dCompVIX_{+}^{*}$, positive VIX innovations, is above its 90% quantile • VIX construction

News_5min, ..., News5min is a set of per-minute news time dummies

✓ VARX implementation details

Introduction	
00000	


Data 000000 Price discovery

Conclusion

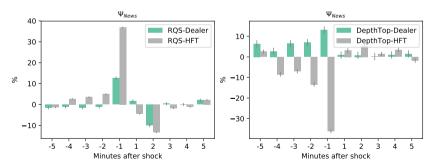
Impulse responses to market-wide volatility spikes

- ► Dealers provide less liquidity than HFTs when facing a large VIX impulse
 - ► Dealers' RQS widens by about 1.75%, double the magnitudes of HFTs'
 - Dealers' DepthTop decreases while HFTs' increases

(a) GBP/USD

ntroduction	
00000	

Data 000000 Liquidity provision


Price discovery

Conclusion

Liquidity provision around macroeconomic news announcements

- ► Ahead of announcements, HFTs significantly withdraw their liquidity
 - ► HFTs' *RQS* increases by over 30% and *DepthTop* decreases by over 30%
 - Dealers much less so

(a) GBP/USD

Introduction	Literature	Data	Liquidity provision	Price discovery	Conclusion
00000	0000	000000	0000000€0000	000000000	000

General liquidity provision: a state space approach

- ► On the passive side ? = the only way of providing liquidity
- ▶ Probably not. For example, traders who aggressively buy during a flash crash
- ► A more general definition: trade against transitory pricing errors, that is, trade "against the wind"
- How to identify pricing errors? While evident during flash crashes or rallies by definition, they are not trivial to identify during market normal times
- ► We use a state space model

Introduction	Literature	Data	Liquidity provision	Price discovery	Conclusion
00000	0000	000000	000000000000000000000000000000000000000	000000000	000

General liquidity provision: a state space approach

State space model specification:

$$\begin{array}{ll} \mbox{Midquote:} & p_t = m_t + s_t \\ \mbox{Efficient price:} & m_t = m_{t-1} + w_t \\ \mbox{Efficient price innovation:} & w_t = \sum_i \lambda_i^j \widetilde{x}_{i,t}^j + \mu_t, \quad \mu_t \sim N(0, \sigma_{\mu}^2) \\ \mbox{Pricing error:} & s_t = \phi s_{t-1} + \sum_i \psi_i^j x_{i,t}^j + v_t, \quad v_t \sim N(0, \sigma_{\nu}^2) \end{array}$$

$$\begin{array}{l} \mbox{(4)} \end{array}$$

- ▶ x^j_{i,t} (x^j_{i,t}): trade flow (trade flow innovation) for trader group i and trade type j (aggressive or passive)
- Our parameter of interest: ψ_i , which captures the transitory price impact of trader group *i*'s trade flow
- $\psi_i < 0$: trades against the pricing error, or in a general sense, provides liquidity.

Introduction	
00000	

Data 000000 Liquidity provision

Price discovery

Conclusion

State space results

-

- ► Dealers' aggressive trade flows create much larger pricing errors than HFTs'
- ► HFTs' passive trade flow reduces more pricing errors than dealers'
- HFTs provide market liquidity by passively absorbing the pricing errors created by dealers' liquidity-demanding trade flows

Pan	el A: Aggressiv		Pa	nel B: Passive	flow	
Currency	GBP/USD	AUD/USD	Currency	GBP/USD	AUD/USD	
Panel A2: Pricing error equation			Panel B2: Pricing error equation			
$\psi_{ extsf{Dealer}}^{ extsf{Aggr}}$	<mark>0.048</mark> (0.003)	<mark>0.049</mark> (0.002)	$\psi_{\textit{Dealer}}^{\textit{Pass}}$	-0.017 (0.002)	-0.021 (0.002)	
$\psi_{\textit{HFT}}^{\textit{Aggr}}$	0.016 (0.003)	0.024 (0.003)	$\psi_{\textit{HFT}}^{\textit{Pass}}$	-0.087 (0.009)	-0.076 (0.005)	
$\psi_{\textit{Other}}^{\textit{Aggr}}$	0.033 (0.005)	0.046 (0.004)	$\psi_{\textit{Other}}^{\textit{Pass}}$	-0.045 (0.003)	-0.036 (0.003)	

Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

Interim conclusions

- So far: dealers and HFTs possess different comparative advantages in market-making in FX market
 - Dealers better at private information events
 - ► HFTs better at market-wide, public information events
- ▶ Next, we turn to their roles in price discovery. Will we see similar patterns?

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion

► More questions?

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion

Outline

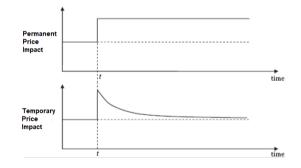
Introduction

Literature

Data

Liquidity provision

Price discovery


Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

Price discovery

- ▶ Price discovery: the process of incorporating new information into prices
- New information leads to permanent price changes

Introduction	
00000	

Data 000000 Liquidity provision

Price discovery

Conclusion

Trade informativeness: Simple price impact measure

► Relative price impact (RPI) by trader-pair:

$$\mathsf{RPI}_t = \frac{d_i \left(\mathsf{Mid}_{t+\Delta_t} - \mathsf{Mid}_t\right)}{\mathsf{Mid}_t} \tag{5}$$

▶ Price impact the largest when dealers aggressively take HFTs' quotes (HFT→Dealer).

		RPI-10 Sec (bp)		RPI-30 Sec (bp)		RPI-60 Sec (bp)	
		Mean	SD	Mean	SD	Mean	SD
Currency Pair	Category Pair						
	$Dealer{ o}Dealer$	0.49	0.15	0.52	0.20	0.53	0.27
	$Dealer{ o}HFT$	0.41	0.08	0.41	0.10	0.41	0.12
	$Dealer{ o}CB$	0.40	0.20	0.43	0.31	0.44	0.41
	$HFT{ o}Dealer$	0.69	0.22	0.69	0.23	0.66	0.26
GBP/USD	$HFT \rightarrow HFT$	0.51	0.17	0.51	0.21	0.52	0.26
	$HFT \rightarrow CB$	0.50	0.26	0.48	0.34	0.47	0.42
	$CB { ightarrow} Dealer$	0.56	0.24	0.59	0.35	0.59	0.40
	$CB \rightarrow HFT$	0.49	0.14	0.51	0.19	0.52	0.24
	$CB \rightarrow CB$	0.47	0.36	0.48	0.58	0.47	0.71

Introduction	Literature	Data	Liquidity provision	Price discovery	Conclusion
00000	0000	000000	00000000000	00000000	000

Trade and quote informativeness: A structural VAR approach

The structural VAR model (Fleming, Mizrach, and Nguyen, 2018; Brogaard, Hendershott, and Riordan, 2019):

$$Ay_t = \alpha + \Phi_1 y_{t-1} + \dots + \Phi_p y_{t-p} + \varepsilon_t$$
(6)

where

$$y_{t} = (r_{t} \quad x_{t}')', \qquad A = \begin{pmatrix} 1 & -a_{0,1} & -a_{0,2} & \cdots & -a_{0,k} \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$
(7)

The endogenous vector y_t consists of r_t, the log midquote return, and x_t, a vector of trade and order variables

Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

Permanent price impact

Rewrite structural VAR into VMA:

$$y_t = \Theta(L)\varepsilon_t = \Theta_0\varepsilon_t + \Theta_1\varepsilon_{t-1} + \Theta_2\varepsilon_{t-2} + \cdots$$
(8)

Permanent price impact (PPI): cumulative impulse responses of CEX return to trade shocks:

$$\mathsf{PPI}_{k} = \frac{\sum_{j=0}^{\infty} \partial r_{t+j}^{\mathsf{CEX}}}{\partial \varepsilon_{k,t}} = [\Theta(1)]_{1,k}$$

Introduction	
00000	

Data

Liquidity provision

Price discovery

Conclusion

Information share

► A decomposition of the midquote:

$$q_t = m_t + s_t \tag{9}$$

where
$$m_t = m_{t-1} + w_t$$
 and $Ew_t^2 = \sigma_w^2$

Rewrite the structural VAR:

$$\begin{pmatrix} r_t \\ \mathbf{x}_t \end{pmatrix} = \begin{pmatrix} \Theta^{\mathfrak{d}}(L) & \Theta^{\mathfrak{b}}(L) \\ \Theta^{\mathfrak{c}}(L) & \Theta^{\mathfrak{d}}(L) \end{pmatrix} \begin{pmatrix} \varepsilon_{r,t} \\ \varepsilon_{x,t} \end{pmatrix}$$
(10)

► The efficient price innovation variance:

$$\sigma_w^2 = \Theta^{\boldsymbol{b}}(1) \Sigma_{\varepsilon_x} \Theta^{\boldsymbol{b}}(1)' + [\Theta^{\boldsymbol{a}}(1)]^2 \sigma_{\varepsilon_r}^2.$$
(11)

► Information share (IS): normalized PPI weighted by its innovation variance

$$\mathsf{IS}_{k} = \frac{[\Theta_{k}^{b}(1)]^{2} \sigma_{\varepsilon_{k}}^{2}}{\sigma_{w}^{2}} \tag{12}$$

Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion

Trade and order variables

- Construct trade and order variables:
 - ► Trade: Market(able) buy orders (+1) or sell orders (-1) resulting in trades
 - ▶ BBO Improve Limit: Limit orders increasing the BB (+1) or decreasing the BO (-1)
 - ▶ BBO Worsen Cancel: Cancel orders decreasing the BB (-1) or increasing the BO (+1)
 - ▶ BBO-Depth Add Limit: Limit orders adding depth at BB (+1) or BO (-1)
 - ▶ BBO-Depth Remove Cancel: Cancel orders removing depth at BB (-1) or BO (+1)
 - ▶ Non-BBO-Depth Add Limit: Limit orders adding depth at < BB (+1) or > BO (-1)
 - Non-BBO-Depth Remove Cancel: Cancel orders removing depth at < BB (-1) or > BO (+1)

Data 000000 Liquidity provision

Price discovery

Conclusion

Message relative frequency

- ► HFTs account for the largest share of order-book messages
- ► HFTs more active than dealers at the top of the order book

Curency	Trader Category Order Type	Dealer	HFT	Other	Sum
	Trade	0.62	1.18	0.35	2.15
	BBO Improve Limit	1.14	2.51	0.61	4.26
	BBO Worsen Cancel	0.63	1.95	0.35	2.94
	BBO-Depth Add Limit	3.21	9.73	1.16	14.10
GBP/USD	BBO-Depth Remove Cancel	2.00	9.64	0.74	12.38
	Non-BBO-Depth Add Limit	2.39	13.35	15.65	31.38
	Non-BBO-Depth Remove Cancel	3.03	13.54	16.21	32.79
	Sum	13.02	51.90	35.08	100.00

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion

Results: permanent price impact

► Trade price impact: dealers > HFTs; Quote price impact: dealers < HFTs

		Dealer	HFT	Other	Dealer - HFT
	Trade	0.31	0.25	0.27	0.06*
	BBO Improve Limit	0.23	0.28	0.24	-0.05*
	BBO Worsen Cancel	0.19	0.22	0.21	-0.03*
GBP-USD	BBO-Depth Add Limit	0.07	0.09	0.06	-0.02*
	BBO-Depth Remove Cancel	0.01	0.06	0.02	-0.05*
	Non-BBO-Depth Add Limit	0.02	0.01	0.00	0.01
	Non-BBO-Depth Remove Cancel	0.00	0.05	0.00	-0.05*

Introduction	
00000	

Data

Liquidity provision

Price discovery 000000000 Conclusion

Results: information share

- ▶ HFTs' limit and cancel orders contribute the majority share to price discovery (>60%)
- If limit orders \approx public information and trade \approx private...
- \blacktriangleright ... \rightarrow then HFTs incorporate public while dealers incorporate private information

		Dealer	HFT	Other	Sum
	Trade	9.05	10.98	3.48	23.51
	BBO Improve Limit	8.73	25.85	3.75	38.33
	BBO Worsen Cancel	3.02	11.89	1.26	16.17
GBP/USD	BBO-Depth Add Limit	1.93	9.22	0.55	11.70
	BBO-Depth Remove Cancel	0.05	4.99	0.05	5.09
	Non-BBO-Depth Add Limit	0.09	0.47	0.03	0.59
	Non-BBO-Depth Remove Cancel	0.03	4.54	0.04	4.61
	Sum	22.90	67.94	9.16	100.00

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion ●○○

Outline

Introduction

Literature

Data

Liquidity provision

Price discovery

Literature 0000 **Data** 000000 Liquidity provision

Price discovery

Conclusion ○●○

- We examine dealers and HFTs in spot FX market
- Key takeaways: HFTs (dealers) better at processing public (private) information, playing complementing roles in liquidity provision and price discovery
 - Both HFTs and dealers reduce liquidity in response to volatility spikes and macroeconomic news announcements...
 - ...HFTs withdraw *less* liquidity (than dealers) during market-wide volatility spikes (more public information) but *more* ahead of scheduled macroeconomic news announcements (more private information)
 - Dealers' trades (revealing private information) are more informative than their quotes (incorporating public information); HFTs' quotes more informative than their trades
 - HFTs' quote updates (incorporating public information) contribute the lion's share to price discovery

Literature

Data 000000 Liquidity provision

Price discovery

Conclusion ○○●

► Thanks for your time!

Further HFT screening rules

▲ Back

Speed rule: HFTs are fast. Measure the speed of a TCID by its reaction time in:

- "Add-Take" event: submitting an aggressive market(able) order after a new limit order is submitted by a different TCID which improves the best bid or ask price or adds depth to an existing best bid or ask price
- "Take-Cancel" event: submitting a cancel order after a partial or full execution of a resting limit order at the same price
- ► Inventory rule: HFTs carry low inventory.
- Combining both the speed and inventory rule, a PTF or hedge fund TCID is classified as an HFT if it satisfies:

End-of-day position to volume
$$< 0.2$$

and (13)
Add-Take speed < 10 ms or Take-Cancel speed < 10 ms

Construct VIX shocks

▲ Back

- 1. Fit an autoregressive (AR) model to the first difference of each volatility index and obtain its innovations: *dVIX*^{*}, *dVFTSE*^{*} and *dAVIX*^{*}
- 2. Standardise each innovation time series
- 3. For GBP/USD, $dCompVIX^* = dVFTSE^*$ between 08:00 and 13:30; $dCompVIX^* = dVIX^*$ between 13:30 and 20:00. For AUD/USD, $dCompVIX^* = dAVIX^*$ between 00:00 and 08:00; $dCompVIX^* = dFTSE^*$ between 08:00 and 13:00; $dCompVIX^* = dVIX^*$ between 13:30 and 20:00.
- 4. Take the non-negative part of the composite VIX innovations: $dCompVIX^*_+(t) = \max\{0, dCompVIX^*(t)\}.$

45/47

VARX implementation details

▲ Back

- Estimate VARX model is estimated at a 1-minute frequency
- Remove intraday seasonality by regressing each of the endogenous variables on 10-minute interval dummies and only use their residuals in the VARX estimation.
- ► Follow Hasbrouck (1991) and insert missing values during the overnight periods.
- To choose the optimal number of lags for the VARX model, we apply the Bayesian Information Criterion (BIC) on each day and obtain the mode lag order across all days.

Summary statistics of VARX variables

▲ Back

- Consistent with the summary statistics before, HFTs quote a narrower bid-ask spread and supply more top-of-book depth at the 1-minute frequency.
- In addition, the standard deviation of HFTs' top-of-book depth is much smaller than dealers', indicating that their top-of-book depth is more stable.

		Ν	Mean	SD	Min	Q25	Q50	Q75	Max
	RQS _{Dealer}	454801	2.66	1.25	0.00	1.76	2.41	3.41	54.98
	RQS _{HFT}	454801	1.76	0.78	0.58	1.46	1.72	1.95	81.95
	DepthTop _{Dealer}	454801	2.32	2.98	0.00	1.04	1.79	2.79	202.60
	DenthTen	454801	3.56	1.65	0.00	2.43	3.34	4.46	15.47
GBP/03D	VIm	454801	9.16	18.70	0.00	1.00	4.00	11.00	1192.00
	TrdImb	454801	3.63	6.52	0.00	1.00	2.00	4.00	648.00
	Vol	454801	1.73	1.58	0.00	0.89	1.33	2.24	89.56
	$\mathbb{1}_{dCompVIX^*_+}$	454801	0.10	0.30	0.00	0.00	0.00	0.00	1.00